Ensemble Sparse Models for Image Analysis

نویسندگان

  • Karthikeyan Natesan Ramamurthy
  • Jayaraman J. Thiagarajan
  • Prasanna Sattigeri
  • Andreas Spanias
چکیده

Sparse representations with learned dictionaries have been successful in several image analysis applications. In this paper, we propose and analyze the framework of ensemble sparse models, and demonstrate their utility in image restoration and unsupervised clustering. The proposed ensemble model approximates the data as a linear combination of approximations from multiple weak sparse models. Theoretical analysis of the ensemble model reveals that even in the worst-case, the ensemble can perform better than any of its constituent individual models. The dictionaries corresponding to the individual sparse models are obtained using either random example selection or boosted approaches. Boosted approaches learn one dictionary per round such that the dictionary learned in a particular round is optimized for the training examples having high reconstruction error in the previous round. Results with compressed recovery show that the ensemble representations lead to a better performance compared to using a single dictionary obtained with the conventional alternating minimization approach. The proposed ensemble models are also used for single image superresolution, and we show that they perform comparably to the recent approaches. In unsupervised clustering, experiments show that the proposed model performs better than baseline approaches in several standard datasets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains

In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...

متن کامل

A Fault Diagnosis Method for Automaton based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition

In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...

متن کامل

A Fault Diagnosis Method for Automaton Based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition

In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...

متن کامل

Machine learning based hyperspectral image analysis: A survey

Hyperspectral sensors enable the study of the chemical properties of scene materials remotely for the purpose of identification, detection, and chemical composition analysis of objects in the environment. Hence, hyperspectral images captured from earth observing satellites and aircraft have been increasingly important in agriculture, environmental monitoring, urban planning, mining, and defense...

متن کامل

A New IRIS Segmentation Method Based on Sparse Representation

Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1302.6957  شماره 

صفحات  -

تاریخ انتشار 2013